
1

Poison Machine (Hack The Box)

Target IP: 10.10.10.84

Target OS: FreeBSD

1. Recon
As usually, we start with the nmap to see open ports:

blinder@peaky:~/Desktop/HTB/Poison$ nmap -v -A 10.10.10.84 -oN nmap.txt

...

22/tcp open ssh OpenSSH 7.2 (FreeBSD 20161230; protocol 2.0)

80/tcp open http Apache httpd 2.4.29 ((FreeBSD) PHP/5.6.32)
Service Info: OS: FreeBSD; CPE: cpe:/o:freebsd:freebsd

...

Let’s check port 80 first.

After enumerating the website, listfiles.php had an interesting output:

2

2. Owning User
Let’s check pwdbackup.txt file:

Fair enough, let’s fire up our Papa Luigi a.k.a. CyberChef (https://gchq.github.io/CyberChef/) for

interactive encoding/decoding. We use From Base64 since the “=” sign at the end of the string

lets us know it’s Base64 encoded text.

We decode until output makes sense, which in this case was: Charix!2#4%6&8(0. Since SSH was

the only running service besides HTTP, this could probably be the SSH password. Let’s try

connecting, and let’s try using charix as username.

https://gchq.github.io/CyberChef/

3

User owned, now let’s move on to owning the system.

3. Owning System
First, we check the content of home directory of charix:

Unfortunately, I could not unzip secret.zip directly because the shell didn’t offer user interaction

to type a password. So, first, I moved it into my Kali Linux machine using netcat:

In the remote machine:

charix@Poison:~ % nc -l 8181 < secret.zip

In my own machine:

blinder@peaky:~$ nc 10.10.10.84 8181 > secret.zip

Now we have secret.zip in the directory we ran nc from. To unzip, I first tried the same

password as the SSH one (Charix!2#4%6&8(0) before brute forcing anything, and it worked.

4

After unzipping, we retrieve a file called secret, which has gibberish content inside it. Let’s run

the following command to see the content in hex format:

blinder@peaky:~$ hexdump -C secret

So, now we have this hex value which makes sense from the dump: bda85b7cd5967a21.

We have no idea what it is, but we will save the value as it may come handy later. In other words,

we continue enumerating.

One of the first things I checked is running services as root, by running ps -aux | grep root

(one of many Linux enumerating commands). Output:

5

Of all running services, Xvnc looked the juiciest one. But what is VNC?

In short, it is a teamviewer-like software to remotely control another computer. Therefore, I started

researching about the service, in which this article www.hep.phy.cam.ac.uk/vnc_docs/start.html

helped a lot.

I checked anything starting with vnc that was installed in the machine and listening ports by

running sockstat:

To get access to that running service, I had to run a viewer, which in Unix is done with vncviewer

(was not installed in Poison machine).

Back in Kali Linux, I tried connection to the viewer that root had initialized, but the service was

available locally only. This means that I had to use SSH Port Forwarding (SSH Tunneling).

SSH has this cool feature (-L flag) that we can request SSH to listen on a particular port on our

machine and forward the traffic to a port on another machine.

blinder@peaky~:$ ssh -L 5902:localhost:5901 charix@10.10.10.84

The above command starts an SSH connection to charix, but also makes my system listen on

port 5902, and forward any connection to 5901 (based in sockstat). By default, VNC protocol

uses port 59XX, where XX is the display number of the server (in this case, display 01).

After establishing the new SSH connection, we check for listening ports in our machine to verify:

blinder@peaky:~$ netstat -punta | grep 5902

Now, instead of using vncviewer :1 we can run vncviewer :2 to launch the viewer and try to

access the service that root started, only to see that it requires authentication (not surprising):

http://www.hep.phy.cam.ac.uk/vnc_docs/start.html

6

Charix!2#4%6&8(0 did not work, so we should get back to our hex value that we saw earlier:

bda85b7cd5967a21. When doing more research, I learned that VNC uses VNC Hash to authenticate

to the remote-control server, and our hex value might as well be a VNC Hash.

I searched for ways to decrypt VNC Server encrypted password, and found a windows executable

file which can decrypt classic VNC DES method:

https://www.raymond.cc/blog/download/did/232/

Its usage is simple: vncpwd.exe <hash>

We now can run vncviewer and authenticate:

https://www.raymond.cc/blog/download/did/232/

7

A viewer is formed, and we are in as root!

We get the flag with the same netcat method.

